2018年4月3日 星期二

古老的病毒可能是使人類擁有意識的原因

來源: An ancient virus could be responsible for human consciousness
原著: Hashem Al-Ghaili (Facebook) | 2018/02/09
譯者: 宗明 (Ming Cheng) | 2018/04/02

一種古老病毒的殘留物正停留在我們的大腦中,這個數百萬年前的病毒可能是人類擁有意識的原因。

新的研究顯示我們的記憶功能來自一種古老的病毒,大約在四億年前這種古老的病毒感染了四足哺乳動物,那些病毒遺傳密碼的小片段今天仍在我們的大腦中活動,原本包含在病毒細胞內的資訊成為我們基因組成的一部分。

科學家們認為,這個病毒在進化過程中被重新利用,幾千年來它演變成 Arc基因(Arc gene) 並且停留在我們的大腦裡,這個基因和我們的神經如何傳遞資訊至關重要,也使我們擁有思考和理性的能力。

Arc基因包裹遺傳資訊,並將其從一個神經元發送到另一個神經元。這種基因的作用方式與病毒相似,一些病毒將它們的遺傳密碼儲存在 RNA中而不是 DNA中, Arc在稱為 RNA的編碼分子中寫下自己的基因指令,然後將其 RNA封裝在類病毒衣殼(virus-like shell) 中,類病毒衣殼在神經元之間傳播時保護內部封裝的資訊,在大腦的不同部分之間傳遞訊息。

科學家們至今仍無法確切地知道它在細胞間傳遞的是什麼資訊,但是研究人員發現若沒有這個 RNA資訊,我們的神經突觸會停止正常運作並死亡。 Arc基因是哺乳動物腦部長期記憶形成的必要條件,這個基因的突變與神經系統失調有關,包括自閉症、精神分裂症、和阿茲海默症。研究中顯示,缺乏 Arc基因的老鼠無法回憶 24小時前發生的事。

病毒通常被稱為基因寄生蟲,他們將遺傳密碼注入宿主細胞,劫持該細胞的組織以產生更多自己的副本,這個過程對宿主細胞要麼無用,要麼有害,每隔一段時間注入的病毒基因就足夠四處傳播,並成為我們基因組的一部分,人類基因組的 40%至80%來自古老的病毒入侵。

神經科學和古代病毒學專家正共同合作以了解人類 Arc基因的確切分子機制,科學家使用病毒將所需的基因傳遞給某些細胞,這允許他們能夠以任何期望的方式對細胞進行基因工程。
[相關文章]

[ 中英對照 ]

古老的病毒可能是使人類擁有意識的原因
An ancient virus could be responsible for human consciousness
The remains of an ancient virus are resting in our brain.
一種古老病毒的殘留物正停留在我們的大腦中。
This millions-of-years-old virus could be responsible for human consciousness.
這個數百萬年前的病毒可能是使人類擁有意識的原因
New study suggests that our memory comes from an ancient virus.
新的研究顯示我們的記憶來自一種古老的病毒
Which infected a four-limbed mammal around 400 million years age.
大約在四億年前這種古老的病毒感染了四足哺乳動物
Little pieces of that viral genetic code are still alive in our brains today.
那些病毒遺傳密碼的小片段今天仍在我們的大腦中活著
Information contained within the viral cells became part of our genetic makeup.
原本包含在病毒細胞內的資訊成為我們基因組成的一部分
Scientists believe that the virus was repurposed during evolution.
科學家們認為,這個病毒在進化過程中被重新利用
Over the millennia, it evolved into the Arc gene and rested in out brain.
幾千年來,它演變成Arc基因並且停留在大腦中
This gene is believed to be vital to how our nerves transmit information.
這個基因被認為對我們的神經如何傳遞資訊至關重要
And can be responsible for our ability to think and reason.
並且使我們擁有思考和理性的能力
Arc gene packages up genetic information.
Arc基因包裹遺傳資訊
And sends it from one neuron to another.
並將其從一個神經元發送到另一個神經元
This gene functions in a similar way to virus.
這種基因的作用方式與病毒相似
Some viruses store them genetic code in RNA rather than DNA.
一些病毒將它們的遺傳密碼儲存在RNA中而不是DNA中
Arc writes down its own genetic instructions in coding molecules called RNA.
Arc在稱為RNA的編碼分子中寫下自己的基因指令
then it encapsulates its RNA in a virus-like shell.
然後將其RNA封裝在類病毒衣殼(virus-like shell)中
The shells protect the information inside while it travels between neurons.
類病毒衣殼在神經元之間傳播時保護內部封裝的資訊
And ultimately pass messages between different parts of the brain.
最終在大腦的不同部分之間傳遞訊息
Scientists are unsure exactly what information it's passing between our cells today.
科學家們至今仍無法確切地知道它在細胞間傳遞的是什麼資訊
But researchers found that without this RNA information.
但是研究人員發現若沒有這個RNA資訊
Our synapses would stop functioning correctly and die off.
我們的神經突觸會停止正常運作並死亡
Arc gene is essential for long-term memory formation in mammalian brain.
Arc基因是哺乳動物腦部長期記憶形成的必要條件
Mutations in this gene have been linked to neurological disorders.
這個基因的突變與神經系統失調有關
Including autism, schizophrenia and Alzheimer's.
包括自閉症、精神分裂症、和阿茲海默症
In one study, mice lacking Arc gene couldn't recall what happened to them just 24 hours before.
在一項研究中顯示,缺乏Arc基因的小老鼠無法回憶他們在24小時前發生的事
Viruses are often known as genetic parasites.
病毒通常被稱為基因寄生蟲
They inject their genetic code into a host cell.
他們將遺傳密碼注入宿主細胞
An hijack the cell's machinery to produce more copies of themselves.
劫持該細胞的組織以產生更多自己的副本
This process is either useless or harmful to the host.
這個過程對宿主細胞要麼無用,要麼有害
However, every once in a while the injected viral genes are useful enough to hang around.
然而,每隔一段時間注入的病毒基因就足夠四處傳播
And become part of our genome.
並成為我們基因組的一部分
40 to 80% of the human genome comes from ancient viral invasions.
人類基因組的40%至80%來自古老的病毒入侵
Experts in neuroscience and ancient viruses are working together.
神經科學和古代病毒學專家正在共同合作
To understand the exact molecular mechanism of Arc gene in humans.
了解人類Arc基因的確切分子機制
Scientists use viruses to deliver desired genes into certain cells.
科學家使用病毒將所需的基因傳遞給某些細胞
This allows them to genetically engineer cells in any desirable way.
這允許他們能夠以任何期望的方式對細胞進行基因工程

2018年3月29日 星期四

蜂群像巨型大腦一樣工作,每個蜜蜂都是一個神經細胞


* 科學新知, 充實對生態和對自身的認識 *

* 研究得出結論,蜜蜂"說話"和蜂群做決策的方式與人腦中的眾多個別神經元間相互作用的方式相同。


來源: Bee Swarms Work Like Giant Brains, Where Each Bee Is a Nerve Cell
原著: Mike Mcrae, Science Alert | 03/28/2018
譯者: 宗明 (Ming Cheng) | 03/29/2018

蜂群像巨型大腦一樣工作,每個蜜蜂都是一個神經細胞


就蜜蜂而言,蜜蜂大腦是相當了不起的東西,雖然人腦勝過它們。但是新的研究顯示, 蜂群中個體成員的表現出奇地像人腦中的神經元。

這不僅告訴我們這些出色的生物是如何互動 — 研究「蜜蜂說話」也能多少告訴我們自己,大腦是如何做出決策。

英國謝菲爾德大學的一個研究小組將一項常用於研究人類心理學的理論模型應用於蜂群的行為。

對於科學家來說,觀察動物行為是否遵循各種支配大腦的心理定律並不罕見。

例如,在心理物理學領域,稱為韋伯定律 (Weber's law) 的規則描述了刺激的大小與刺激量明顯增加之間的關係。 它的工作原理是這樣的:想像拿起一個蘋果,對比於拿起三個蘋果 — 你會注意到不相同。但是如果有人偷偷地把幾個蘋果塞進你滿載的購物袋裡,你就不太可能發現差異。

這種關於刺激和知覺間的規律已經從各種動物中觀察到,從哺乳動物、到鳥類、到魚類。 雖然這種規律似乎也符合更低等生物體的集體行為,像黏菌這種無腦變形蟲上也可觀察到。目前尚未在諸如昆蟲巢穴這種以許多小型腦所組織的群體進行研究。

為了研究它在歐洲蜜蜂 (Apis mellifera) 決策過程中的作用,研究人員觀察了蜂巢分家和尋找新家的過程。

具體而言,他們分析了蜂群在不同地點之間做出決定的速度有多快,並將資料導入幾個心理物理學定律以確定它們的適合程度。

除了韋伯定律之外,研究人員還分析了皮爾頓定律 (Pieron's law),這條規則描述,當兩種選擇都是高品質時,我們會很快地做出決定;而另一項名為 Hick定律則描述,隨著選項數量的增加,大腦需要更多時間進行選擇。

人腦決策包含單一神經元發出電化學信號波的動作。 在蜜蜂之中,蜂巢的選擇取決於偵察蜂之間的互動,偵察蜂通過身體擺動的視覺化訊息來傳達他們的發現。 根據研究結果,偵察蜂擺動和神經信號間的競爭都遵循著與決策相關的規律。

計算機科學家兼論文主要作者 Andreagiovanni Reina 說:「該研究還支持蜂群與完整生物體相似的觀點。 更好的是,超級生物體由眾多完全成熟和自主的個體組成,這些個體彼此互動以產生集體反應。」

識別不同系統之間的關聯,如大腦和蜂巢,可以幫助我們理解複雜系統中出現的簡單行為 。

這項研究是一個好的開始,但研究人員指出,它仍然只是建立在少數觀察為依據的計算模型。 如果它得到更多的資料支持,未來的研究將著重在個別系統達成這些結果的獨特方式,從而告訴我們更多的關於心理學是如何僅僅由神經細胞中化學物質的波動而產生。

如果沒有其他方法,那觀察蜂群尋找新家比觀察神經元瞬間的波動要容易得多。

「發現蜂群和大腦神經元行為之間的相似之處非常有用,因為研究蜂群選擇蜂巢的行為比研究大腦神經元如何做決策更簡單」雷納說。

這項研究發表在 「 科學報告 ( Scientific Reports) 」 。

[ 註 ] 
皮爾頓定律 (Pieron's Law)
當決定的兩個選擇是高質量時,大腦可更快地做出決定。當兩個選項的質量較低時,大腦速度較慢。研究蜂群時,研究發現,與兩個低質量蜂巢相比,蜂群在兩個優質巢穴之間作出決定更為迅速。

Hick定律 (Hick's Law)
當選擇選項的數量增加時, 大腦的決策速度會更慢。在這項研究中, 學者們發現, 當可選擇的蜂巢位址的數量增加時, 蜂群的決策速度會較慢。

韋伯定律 (Weber's Law)
當選項間的品質只有極小的差異時, 大腦仍能夠做出最佳的選擇。 低質量間的最小差異和高質量間的最大差異, 存在一個質量和最小差異之間的線性關係。 這項定律也適用於刺激和品質的變化, 例如, 光, 聲音或重量。如果你拿著1磅的岩石, 再加上另1磅的岩石, 你會立刻注意到它們的區別;但是如果你拿著30磅的岩石, 再加上1磅 , 變化就不那麼引人注目了。

這項研究顯示蜂群在作出集體決定時,與人腦決策時一樣適用相同的定律。


[ 中英對照 ]

蜂群像巨型大腦一樣工作,每個蜜蜂都是一個神經細胞
Bee Swarms Work Like Giant Brains, Where Each Bee Is a Nerve Cell

by Mike Mcrae, Science Alert, 03/28/2018

就蜜蜂自己而言,蜜蜂大腦是相當了不起的東西,雖然人類的計算能力仍然勝過它們。但是新的研究顯示, 蜂群中個體成員的表現出奇地像人腦中的神經元。
On their own, bee brains are fairly remarkable things, although human computing power still trumps them. But new research suggests that individual members of a swarm behave surprisingly like neurons in a human brain.

這不僅告訴我們這些出色的生物是如何互動 — 研究「蜜蜂說話」也能多少告訴我們自己,大腦是如何做出決策。
Not only does this tell us something about how these remarkable creatures interact - studying 'bee speak' could tell us a thing or two about how our own minds make decisions.

英國謝菲爾德大學的一個研究小組將一項常用於研究人類心理學的理論模型應用於蜂群的行為。
A team of researchers from the University of Sheffield in the UK applied a theoretical model commonly used to study human psychology to the behaviour of bee colonies.

對於科學家來說,觀察動物行為是否遵循各種支配大腦的心理定律並不罕見。
It's not unusual for scientists to see if animals follow the kinds of psychological laws that govern our own brains.

例如,在心理物理學領域,稱為韋伯定律 (Weber's law) 的規則描述了刺激的大小與刺激量明顯增加之間的關係。
For example, in the field of psychophysics a rule called Weber's law describes a relationship between the size of a stimulus and noticeable increases in its magnitude.

它的工作原理是這樣的:想像拿起一個蘋果,對比於拿起三個蘋果 — 你會注意到不相同。但是如果有人偷偷地把幾個蘋果塞進你滿載的購物袋裡,你就不太可能發現差異。
It works like this: imagine lifting an apple, compared to lifting three apples - you'd notice a difference. But if somebody secretly slipped a few apples into your overloaded shopping bag, it's unlikely you'd spot the difference.

這種關於刺激和知覺間的規律已經從各種動物中觀察到,從哺乳動物、到鳥類、到魚類。
This general rule about stimulus and perception has been observed in all manner of animals, from other mammals to birds to fish.

雖然這種規律似乎也符合更低等生物體的集體行為,像黏菌這種無腦變形蟲上也可觀察到。目前尚未在諸如昆蟲巢穴這種以許多小型腦所組織的群體進行研究。
While the law also seems to fit the collective behaviour of simpler organisms – it's been observed in brainless amoeba such as slime mould – it hadn't yet been studied in whole clusters of tiny brains such as an insect hive.

為了研究它在歐洲蜜蜂 (Apis mellifera) 決策過程中的作用,研究人員觀察了蜂巢分家和尋找新家的過程。
To investigate its role in the decision making processes of the European honey bee (Apis mellifera), the researchers watched hives split apart and hunt for new homes.

具體而言,他們分析了蜂群在不同品質的地點之間做出決定的速度有多快,並將資料導入幾個心理物理學定律以確定它們的適合程度。
Specifically, they analysed how quickly the colonies made decisions between sites of varying qualities and plugged the data into several psychophysics laws to see how well they fit.

除了韋伯定律之外,研究人員還分析了皮爾頓定律 (Pieron's law),這條規則描述,當兩種選擇都是高品質時,我們會很快地做出決定;而另一項名為 Hick定律 的則描述,隨著選項數量的增加,大腦需要更多時間進行選擇。
In addition to Weber's law, the researchers analysed Pieron's law; a rule that says we make decisions faster when two choices are high quality, and a rule called Hick's law that says brains take more time to choose as the number of options goes up.

人腦決策包含單一神經元發出電化學信號波的動作。
Decision making in human brains involves the actions of single nerves firing waves of electrochemical signals.

在蜜蜂之中,蜂巢的選擇取決於偵察蜂之間的互動,偵察蜂通過身體擺動的視覺化訊息來傳達他們的發現。
Among bees, the process of choosing a hive comes down to the interactions of scout bees communicating their discoveries through a visual display of body wiggles.

根據研究結果,偵察蜂擺動和神經信號間的競爭都遵循著與決策相關的規律。
Going by the results of the study, the competition between bee-wiggles and nerve-firing both follow the same general laws behind decision making.

計算機科學家兼論文主要作者Andreagiovanni Reina說:「該研究還支持蜂群與完整生物體相似的觀點。 」
"The study also supports the view of bee colonies as being similar to complete organisms," says computer scientist and lead author Andreagiovanni Reina.

「更好的是,超級生物體由眾多完全成熟和自主的個體組成,這些個體彼此互動以產生集體反應。」
"Or better still, superorganisms, composed of a large number of fully developed and autonomous individuals that interact with each other to bring forth a collective response."

識別不同系統之間的關聯,如大腦和蜂巢,可以幫助我們理解複雜系統中出現的簡單行為 。
Identifying the connections between such vastly different systems as brains and bee hives can help us make sense of how simple actions emerge from complex systems.

這項研究是一個好的開始,但研究人員指出,它仍然只是建立在少數觀察為依據的計算模型。
This study is a good start, but the researchers note it's still only a computational model based on a handful of observations.

如果它得到更多的資料支持,未來的研究將著重在個別系統達成這些結果的獨特方式,從而告訴我們更多的關於心理學是如何僅僅由神經細胞中化學物質的波動而產生。
If it is supported by even more data, future work could zero in on the unique ways each system achieves these results, telling us more about how psychology arises from little more than waves of chemicals in nerve cells.

如果沒有其他方法,那觀察蜂群尋找新家比觀察神經元瞬間的波動要容易得多。
If nothing else, watching bees look for a new home is a lot easier than trying to watch neurons blink.

「發現蜂群和大腦神經元行為之間的相似之處非常有用,因為研究蜂群選擇蜂巢的行為比研究大腦神經元如何做決策更簡單」雷納說。
"Finding similarities between the behaviour of honeybee colonies and brain neurons is useful because the behaviour of bees selecting a nest is simpler than studying neurons in a brain that makes decisions," says Reina.

這項研究發表在科學報告( Scientific Reports) 。
This research was published in Scientific Reports.